
First I will give a cameo to
illustrate how difficult innovation
is, in an attempt to get back to the

kind of ambience that would have
existed during earlier eras, leading to
today’s multiple dysfunction in high
technology.

Cameo
Sir Clive Sinclair set up a company,
Anamartic, to develop my Wafer Scale
Integration invention, ‘Catt Spiral’. It
had previously been developed by
UNISYS in Scotland, whose chief
engineer told me he used hijacked
money without the permission of
UNISYS HQ in the USA. Then he
moved to do the same work for
Sinclair. Even though he had been a
maverick, he thought it important that I
should not be well informed as to the
detail of the work being done to
develop my invention. One day I gave
him the slip, and came across a
machine which could do “stitch
bonding” across the face of a wafer.
The engineer told me about its yield
(reliability). This led later to my next
invention, Kernel, which obsoleted
Catt Spiral. The company, which had
fired me, hired me back because of
Kernel. This shows how important
they thought it was.

Without reliable enough stitch, it was
impossible to deliver both the electrical
current needed for distributed
processing across a wafer, and the
global 100Mb serial data streams
needed. The electrical resistance of the
conventional Al conductors on a chip
surface was too great. Decades before
bonding, I had solved the obverse
problem of heat extraction using on-

chip liquid cooling.
We can map this separation onto the

situation in Bletchley and later
Manchester, where there was an
apartheid between mathematicians and
engineers. This would have made it
impossible for cryptographers like
Turin, however brilliant, to contribute
to the development of the general
purpose computer, which was
engineering hardware. The article by
Lee Sallows, A curious new result in
switching theoryin EWMay 2004,
p32, prompted me to expostulate about
logic design, the field that earned me
my salary for decades. My article in
EWin June 2003 is a cry over the
unwarranted limit placed on
computing power by allowing only
one processor per machine. Now, in
the case of Sallows, we can see a
restriction at a much more basic level,
similarly due to temporary historical
engineering tradeoffs which were
thought to have permanent
significance.

In 1959, when I graduated in
Engineering from Cambridge
University, the head-hunters from
Ferranti encouraged me to try working
in the new digital computer industry. I
joined the late Gordon Scarrott’s labs
in Ferranti Manchester, which was tied
to Manchester University. The other
important computer place was Elliot
Bros., Borehamwood, which was tied
to Cambridge University. Nowhere
else mattered.

The Ferranti/Manchester team beat
Cambridge, because the structure of
their linkage between industry and
university was better than the
Cambridge structure. Apparently, in

the Cambridge case, the university
remained too much in control, which
stunted them. The Ferranti/Manchester
Atlas computer sold for a couple of
million pounds, and competed with the
big fast IBM machine, which was
officially called ‘Stretch’. Its name
boasted that all its technologies had
been stretched to their limit. When it
failed to function, we called it
‘Twang’, and the world market came
to our Atlas.

I did not hear the name ‘Turing’ until
decades later, yet I now read that Alan
Turing worked at Ferranti/Manchester
University until he killed himself in
1954. His name was not on any of the
documents I read and used, even
though I did some of the design for the
Ferranti Atlas. Why was there never
any mention of Turing if, as we now
persistently read, Turing was the
genius who made massive contribution
to our work designing and building
computers? We did have a ‘resident
genius’, but his nickname was ‘Yanto’,
E T Warburton, not Turing. I never
even heard of the ‘Turing Machine’
until decades later, though I worked in
the Ferranti labs for three years. This is
a useful sidelight on the bizarre schism
down the middle of the subject called
‘logic’, or ‘logic design’.

When you do a Google search for
Turing + logic, you end up reading about
Oxford Logic, about which more later. If
Turing was the brains behind my work,
but I find Oxford logicians name-
dropping him, did Turing have a foot in
both camps? The answer is probably that
he had a foot in neither, but, like my hero
T E Lawrence, his history has to be
falsely rewritten now for PC reasons

27July 2004 ELECTRONICS WORLD

Boolean castles

“ …In next month’s EW I hope
the editor will let me tell you
more…”Ivor Catt, Letter to the Editor,
EW June 2004, p56 – he has

in the air
IBM ‘stretch’

28 ELECTRONICS WORLD July 2004

which will be obvious to
you.

The last paragraph is
explained by my
journey into the past
while writing this
article. In a letter dated
26 October 1948 the
Ministry of Supply
placed an order with
Ferranti Ltd. “to
construct an electronic
calculating machine to
the instructions of
Professor F. C.
Williams.” The line between
“mathematicians” and “engineers” was
demarcated very clearly, and if not
quite an Iron Curtain, it was a barrier as
awkward as the MacMahon Act. This
would never be Alan Turing’s
machine. This explains both why I
never heard of Turing the
mathematician, and also why we can
ignore Turing when tracing the history
of the development of logic gates. He
had no access to those who were
developing computer logic design. This
also explains something I never before
understood, which is why, when I
arrived from Cambridge, I was met
with such hostility by the engineers. By
ignoring the fact that my degree was in
engineering, and that the Cambridge
physicist Ken Johnson was already
there out-performing them, they would

have feared that I
was yet another
unpractical
Cambridge
mathematician
like Turing
trying to do
engineering
design. It also
explains why
they reversed
the deflection
plates on Ken
Johnson’s
oscilloscope,
and were
gleeful when
it took him a

week to find out
what was wrong. The autumn of 1949
saw Alan’s only titbit of hardware
design for a Ferranti machine. His own
electronic knowledge stopped short of
the necessary practical detail.

In 1959, when I started doing logic
design for the Ferranti Sirius
Computer, I asked my boss, the late
Charlie Portman, what books I should
read. He replied that there were none.
He said we were doing something
totally new. So much for the influence
of ‘Oxford Logic’, an academic
discipline which had a pedigree of
centuries. Stargazers tell me that Sirius

is a dog’s leg. Our Sirius
was the size and shape
of an upright piano.
Total main memory was
40,000 bits, so software
was minimal. This
article’s text would just
about fill our memory.
We had an assembler
from Machine Code into
Assembler, which would
then be printed onto
punched tape, to be used
as input when the
programme was run. We

had no (real time) interpreter. A
cabinet with three times more add-on
memory cost what I would earn in ten
years. One logic gate cost £5, half a
week’s pay. I did some of the logic
design, including the ‘Divide’
instruction, which we added to entice

the reluctant customer to our £25,000
machine. Start with Dividend and
Divider, and end with Quotient and
Remainder. I did ‘divide’ by
successive subtraction. Take the
divider away again and again until
what is left of the Dividend changes
sign. Add one Divider back, and
subtract one from the count of how
many times, which becomes the
Quotient. What is then left of the
Dividend is the Remainder. You might
think it sad that, correctly, nobody told
me to look into what I call ‘Oxford
Logic’. I have never, ever, found
useful overlap between Oxford Logic
and my decades of salaried work doing
logic design of digital systems.

When I do a Google search for Logic
+ implication , which latter is the only
“function” that I remember from their
world, I find hits
for Turing! When I
do a Google search
for Turing +
Boole, I get the
book, The
Universal
Computer: The
Road from Leibniz
to Turing by
Martin Davis.

What is “The
Universal
Computer”? Is it our kind of computer,
or some confection of Oxford Logic?
Mark Johnson, reviewing the book,
writes:

“The first major advance came when
George Boole developed an algebra of
logic. His system was able to capture a
fair amount of what might be called

everyday reasoning, but it still had
limitations. Gottlob Frege was able to
address these limitations, and in so
doing, created essentially the system of
first-order logic which we use today.”

I have never heard of “first-order
logic”, although I designed computer
systems for decades. “First-order logic
which we use today”! Who uses it? So
Turing is behind first order logic etc.,
and Turing is the genius behind the
digital computers I helped to design.
And I never heard of Turing until years
later, and I never heard of “first order
logic” until today.

Mark Johnson ends:
“Read this book. Have your friends

read it. And remember both the
logicians and the engineers the next time
you boot up your universal computer.”

Does he mean logic designers like
me who designed your computer, or
the Oxford logicians who bend the
brains of their students?

I outline the nature of Oxford Logic
as follows:

All oranges are purple.
It is purple.
Therefore it is an orange.
True of false?
Since I usually earned my living

doing logic design, or teaching it to
students, my mind resists going
through more than half a page of their
stuff. Do the students who get sucked
into their logic then run away, and
become pinstripes in the City earning
fat salary trading currencies? Or do
they go on to teach younger victims
about purple oranges? Arnold Lynch
says that Colossus was not a computer,
and it lacked memory. He also says
that Turing was involved with a
simpler machine and had nothing to do
with Colossus.

I have concluded that since even in
my time there was virtually no software
in our computers because of the cost of
memory, it followed that up until then,

although
mathematicians
might have done
brilliant work
using their
primitive
computers, they
would not have
been able to
influence computer
hardware. In much
the same way,
however brilliant I

proved in my use of a hand calculator
in 1980, I would not have had much
influence on its design, particularly if I
had little knowledge of its engineering.
Last week, Arnold Lynch said that in
the case of cracking German codes
with Colossus, 80 or 90% of the
challenge was in the hardware design

Alan Turing

All oranges are purple.
It is purple. Therefore it is
an orange. True of false?

and construction. Turing, who Arnold
says was probably the best
mathematician at Bletchley, could only
have influenced the other 10 or 20%,
that is, developing procedures to solve
problems using any available
computing machines. Colossus was
specified by Max Newman, who had
Turing as a student in Cambridge.
Arnold says that Bletchley rejected
Colossus because of their lack of
technical knowledge about valve
reliability, and it was built by Flowers
at Dollis Hill after its rejection by
Bletchley. Here we see that lack of
technical knowledge caused
mathematician/cryptographers to
obstruct architectural advance even
towards special purpose computer
systems dedicated to their own
problem. As with stitch bonding, state
of the art technical knowledge is
indispensable, even for apparently
special purpose machines, let alone
general purpose.

When writing his article in EWMay
2004, Sallows enters a murky world
where political correctness has
encouraged much rewriting of history,
aided by the heavy secrecy
surrounding Bletchley Park. However,
even without the present urge to erase
any achievements by white
heterosexual males from history, he
would have been misled. Sallows’
“remarkably simple, highly intriguing,
probably useless, but undeniably
fundamental new result in switching
theory” is to get two inverters, aided
by numerous other Boolean logic
gates, to perform the function of three
inverters. Perhaps this challenge
derives from the era when the
transistor inverted, and the transistor
was expensive. In contrast, I am
concerned about very useful but
suppressed aspects of logic design
which Sallows tends to obscure even
more. The reason is that Boolean
functions are not fundamental, as I
showed in my article published in
February 1968, see
www.ivorcatt.com/47.htm, where I
prove that the basic set of logic
functions with one or two inputs totals
four, the Inverter, the AND, the OR
and the Exclusive-OR. Starting with a
gate with one input, we find that one
type only, the Inverter, is possible.
Moving on to gates with two inputs
where the inputs are treated the same, I
show that the three basic gates are
AND, OR and Exclusive-OR. All
other possibilities are the inverse of my
three, plus output stuck at 0 and output
stuck at 1.

Lacking the Exclusive-OR, nothing
which builds on Boole can be
fundamental. This is not the fault of
Boole, who intellectualised about his

kind of logic in 1850, not about the
basics of the digital electronic
computer in 1950 and 2000. Even in
his own period he was at fault for
missing the Exclusive OR, but not
seriously so considering his objective,
to clarify reasoning. In stark contrast,
our billion-dollar industry wants to
serve humankind without subjecting
them to intellectual activity. The
computer designer wants to get the
hole in the wall to deliver cash to you
aided by minimal thought and action
from you, and without your having to

consider the nature of Truth, which is
irrelevant.

Computer science did not emerge
into view as a separate discipline from
a cluster of related topics. Logic design
emerged as part of digital hardware
design when engineers strove to build
practical machines. They came to think
that short-term engineering
convenience was based on
fundamentals which for a time
happened to reinforce the gap in
Boole’s set of logic functions.

I have checked back to find that
circuitry was so expensive and small in
number that machines like Colossus
had virtually no logic design content.
A few years later on, mechanical
relays could most easily implement
AND, OR and INVERT. The next
generation of logic, using resistors and
very expensive triodes, later expensive
transistors, could most economically
implement AND, OR, INVERT. The
Exclusive OR remained more
expensive to build.

Although I went on a training course
to programme the last machine to use
triodes, the Ferranti Pegasus, I did
virtually no logic design with valves,
beyond a three bit counter. My main
logic design began with discrete diodes
and transistors. A transistor cost £2,
about a day’s pay, while a diode was
much cheaper at seven shillings. The
ruling logic gate used a bank of diodes
for AND or OR, and a restandardising
transistor which insisted on inverting
while doing so. This series of accidents
caused the incompleteness of Boole’s
set to be overlooked. The Exclusive
OR required two transistors, and so
was ruled it out of the set for reasons
of cost.

By 1965, the cost of transistors had

fallen enough to justify building the
exclusive OR, but virtually nobody
did. Its design relied on the fact that in
order to conduct, a transistor’s emitter
and base must be at different voltages.
One transistor would conduct for A
and NOT B, while the other transistor
would conduct for B and NOT A.
Collector OR-ing gave the complete
Exclusive OR. Only one person, the
logic board designer in Data Products
Corp., Culver City, noticed the
engineering opportunity. I found it
very useful, and this helped me to
escape from the conceptual trap
everyone had fallen into, starting with
Boole and deepening because of short-
term engineering tradeoffs with relays
and valves.

Oxford Logic
I went to see my co-author Dr Arnold
Lynch this week and audiotaped him
for two hours on his design work on
the Bletchley Park Colossus, which
Lynch said was not a computer and
had no memory. Ninety years old on
June 2, 2004, he is one of only two
survivors from those who helped to
design and build the machine, see
Electronics World, June 2004, page
16. There were “need to know”
secrecy barriers within the design
team, but after the war, Lynch heard a
lecture by the key designer, Thomas H.
Flowers. Flowers said there was no
mathematical symbolism in the matter
of the machine’s logic, whereupon
Lynch suggested to him that he read
Tarski, not knowing that Tarski was
“Oxford Logic” (purple oranges). A
single quote from Tarski will suffice:
Truth as a semantic concept.
I should like to propose the name “the
semantic conception of truth” for the
conception of truth which has just been
discussed.

As my web pages show, my
colleague Theocharis and I are very
concerned about Truth, as his article in
Nature proves. Our concerns do not
map onto Oxford Logic. Further, both
are orthogonal to my decades of work
designing computers, where true and
false are given, and never questioned.
Tarski and Oxford Logic, and also my
own concerns about Truth, have no
place in digital computer hardware as
it developed, and as it is today. My
own suppressed article on Truth, and
also Theocharis, can be found on my
websites.

In your local bookstore, you can pay
£40 for a book on Oxford Logic
written by an Oxford Professor in
2002, presumably used as text in
college courses on “Logic” to
unsuspecting student victims. This will
not give them access to the multi-
billion dollar industry, digital

29July 2004 ELECTRONICS WORLD

Truth as a semantic concept.
I should like to propose

the name “the semantic
conception of truth” for the
conception of truth which
has just been discussed.

hardware, that my culture spawned,
but which has admittedly now been
driven abroad. After reading half a
page of Oxford Logic, my head is
spinning, and I stop. Oxford students
must be chastened, deeply impressed
by the Tarski tribe standing between
them and their degree.

When I was Principal Lecturer in
West Herts College and a member of
the County Syllabus Committee, I tried
hard to get rid of magnetic core
memory from our Computer Hardware
courses because I knew it had been
obsolete for a quarter of a century. I
failed, because all the other lecturers,
although junior to me in status,
succeeded in stopping me from
removing what little they knew from
the syllabus.

Oxford Logic has no relevance to the
hardware behaving the way you want
when you dialogue for money with a
hole in the wall. My co-author David
Walton, who later specialised in
problems with large, complex arrays of
software, may argue that it then has
relevance, but that came much later
when the cost of memory had fallen
and made complex software possible.

Sources for this article can be found
at www.ivorcatt.com/47.htm

30 ELECTRONICS WORLD July 2004

START Set x = 1

Evaluate

Subtract

to get

Halve this,

say

Replace by

Test sign of y

positive or zero

Change sign of y

Add h

Test sign of result

positive or zero

STOP

negative

negative

First approximation

Compute
improved
approximation

Repeat cycle
if difference
is h or more

1
2 (x

a - x (=y

x
a - x

x

x
a

x
x + y

Back issues of Electronics World are available priced at £4 including p+p in the UK and
£4 plus p+p elsewhere. Please send correct payment to:

Electronics World, Highbury Business, Media House, Azalea Drive, Swanley, Kent BR8 8HU

There are a also a limited number of back issues from 2002 & 2003.

Back Issues

A process for evaluating √a (x is the
result) from the Ferranti Pegasus

programming manual 1962

